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Quantitative Biofractual Feedback Parts I-III 
D. W. Repperger

Air Force Research Laboratory
AFRL, WPAFB, Ohio 45433, 

USA

Overall Summary of Parts I, II,  and III
Part I: Fractional Dimension (Fractals, Bioinspired, Intelligent C.)

sine wave     C∞ versus         Weierstrass Function     C0

Part II:   Quantitative Feedback Theory

Part III: A Common Problem – Diffusion Equation
(a) Solve the classical way.

(b) Solve using Laplace Transforms.

(c) Solve using Fractional Calculus.

(d) Examine Robustness via Quantitative Feedback Theory.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
MAY 2008 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2008 to 00-00-2008  

4. TITLE AND SUBTITLE 
Quantitative Biofractual Feedback Parts I-III 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory,Wright Patterson AFB,OH,45433 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM002223. Presented at the NATO/RTO Systems Concepts and Integration Panel Lecture
Series SCI-195 on Advanced Autonomous Formation Control and Trajectory Management Techniques for
Multiple Micro UAV Applications held in Glasgow, United Kingdom on 19-21 May 2008. 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

75 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Quantitative Biofractual Feedback Part I 

. We are now living in a world that is complex, distributed, 
but may  be highly vulnerable.

. A better understanding of performance, and vulnerability 
of complex, distributed systems is required. How should 
we allocate resources for protection?

The Part I talk will have  four main components:

(A) Pose the problem of performance and vulnerability in 
complex and distributed networks.

(B) Provide  background material on some pertinent areas.

(C) Using Computational Intelligent methods, solve a 
related problem. This will be a “brute force” approach.

(D) Finally, hypothesize some theoretical approaches. 
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Part 1-A- Pose the Problem:

Figure 3 – The Original Network-Centric Distributed System
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node
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node

node

node

node

node
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node

node

Inputs

Outputs

node node

node node node

node node

Performance:  Rate of flow through the network.

Vulnerability: Sensitivity of performance to attack of node.

V3, $C5
Cut set

node(s)

(absolute or 
relative 
objective 
measures 
of  Vi, $Cj )



Part 1-A- Pose the Problem:

Some examples of important networks:

(1) Power grids, railroad tracks,

financial systems, etc..

(2) Flow of people, water, food, medicine.

(3) Communication systems.

(4) Information networks (Internet), 

email systems.

(5)  Physiological systems (blood, oxygen,  
heart attack, cell networks in biology).

(Some networks we may wish to destroy.)



Part 1-A- Pose the Problem:

One Network we wish to destroy:

A second important network to introduce 
congestion or denial of service:

© Dstl 2001
21 March 2007 Dstl is part of the 

Ministry of Defence

C-IED Capabilities
Timeline for single IED event

Leadership

Support 
(International)

Local 
Leadership

Recruit

Supply

Support 
(Local)

Train

Plan 
Attack(s) 

Build IED
Funding

Emplace

Escape

Secondary 
Attack

Monitor & 
Detonate 

Surveillance

Confirm 
Plan 

Rehearse 
Attack 

Movement

Target 
Selection Promote 

Success 

BDA



Part 1-B- Background Material

Graph

Theory

Optimization

Information
Theory

Bioinspired

(Fractals)

Fractional

calculus
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Part 1-B- Background Material

Bioinspired - Fractals

Oxygen Diffusion

Water Diffusion

Lung Tree

d1

d2 d3

d1

d2

d3

γγγ )()()( 321 ddd +=

γ =  2.5??

t
txua

x
txu

∂
∂

=
∂

∂ ),(),( 2
2

2

Area 1

Fractional
Dimensions 
are NOT

Minimum 
energy –

They are

Optimal  for 
Diffusion



Part 1-B- Background Material

Bioinspired - Fractals

. The Latin fractus = “broken” or “fractured”

. Fractals – scale free (self-similar), irregular overall length 
scales. (self similar means the structure is invariant to change in
scale).    Forever continuous but nowhere differentiable.

. Fractals may have infinite circumference but finite area. 

. Fractals can have finite volume and infinite area.

. A fractal can be defined in the sense of a  recursive equation:
zn+1 =  f(zn)

. This is, apparently, the optimal way to distribute flow.

. Non Euclidean Geometry.

. Fractal examples (trees (branches), rivers, lighting bolts, cells,  
lung passageways, blood vessels, leaf patterns, cloud surfaces, 
molecular trajectories, neuron firing patterns, etc.).

Area 1



Fractals – Lets Review the Area
B. Mandelbrot (1960,s) asked the question: “How long is the 
coastline of Britain?”

A fractal has statistical self-similarity( power law, self affine).

A fractal has N identical parts with scale factor L.

The Hausdorff dimension is 

L
tMeasuremenD

log
)log(

=

Length = L

Area = L2

Volume = L3

(Measurement)  = L D          

implies   log(Measurement)= D (log(L)) 

≠ Integer

(Suppose we measured the 
coastline with a ruler that got 
smaller and smaller?)

Area 1



Fractals – Lets Review the Area

L
tMeasuremenD

log
)log(

=

(Measurement)  = L D

L α A ½ α V1/3

For irregular surfaces, we can define:

Let N = the number of divisions of fixed length.

Let r = length of a ruler.

0 as 
/1log

) log(
→= r

r)(
LengthTotalD

Area 1



Fractals – Lets Review the Area

L
tMeasuremenD

log
)log(

=

Total Length = LD where 1 < D < 2

Length = 4 = measurement

Projection = topological dimension = 3

...26185.1
)3log(

4log
==

)(D

Koch Snowflake

Area 1



Fractals – Lets Review the Area 
Different versions of the Koch snowflake. 

Finite

Area

Circumference 

= total length 

= (4/3)n

Biofractals

21 orders of 
magnitude

Microbe = 10-13 g

Whale = 108 g

Log(1/ε)

Log(total

length)

Power law

)3log(
)4log(

=slope

lim (total length) → ∞
n→∞

Area 1



Fractals – Lets Review the Area.

L
tMeasuremenD

log
)log(

=

How to determine Measurement?

We “cover” with boxes or disks.

Area 1



Fractals – Cantor Set (Cantor Dust)

L
tMeasuremenD

log
)log(

=

(remove the middle third)

Basic

2/3

2/3 (2/3)

...63092.0
)3log(
)2log(
==D

Area 1



Total length 

= (2/3)n

Log(1/ε)

Log(total

length)

Power law

lim (total length) → 0
n→∞

)3log(
)2log(

=slope

Deleted points of 
Lebesgue measure 
1,  the remaining 
points of Lebesgue
measure 0.

Area 1



What is the Complement of the Cantor Dust Set?
The set of deleted points of Lebesque measure 1

The remaining points of Lebesque measure 0.



Fractional Calculus – Main Points

)(tu
dt

yd
n

n

=

What can n be?

Answer: 

n = integer = 1, 2, 3 4,

n = negative integer = -1, -2, -3

n can be a non integer, n = ½,  5/6. 

n can be a negative non integer, n = -.6, -3.4,

n can be irrational:  

n can be a complex number:

2=n

1−=n

(non Euclidean geometry)

Area 2

(Notation 
invented by 
Leibniz)

(In 1695, L’Hopital asked 

Leibniz, suppose n= ½?)



Fractional Calculus – Main Points
(non Euclidean geometry)

Area 2

Why Study Fractional Calculus?

Composite Materials

Log of frequency
ω

10Log10(Power Gain)

Db
Slope =  s-(1/2)



Fractional Calculus –Main Points

Why use Fractional Calculus?

(1) It can deal with functions that are forever continuous 
and nowhere differentiable (fractals).

(2) It has the property of self similarity (scale invariance)

(3) It is also of the form:

zn+1 = f(zn)
(Iterated function theory).

(4) It can also solve partial differential equations:
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Fractional Calculus 
Area 2

An Easier Way to View the Self Similarity Property

A power law f(x) = xa has the 
property that that the relative 
change in 

Is independent of x 

ak
xf
kxf

=
)(
)(

In this sense, the functions lacks characteristic scale 

(scale free or scale invariant). Let us evaluate
)(
)(

xf
kxf

Let  x  =  ya

Then

a
a

a
a

a

a

k
y
yk

y
ky

xf
kxf

===
)(

)(
)(

Note: no dependence on  x



Fractional Calculus –Main Points
(310 year old area). Non Euclidean

Common Properties

(1) Scale Invariance – Self Similarity.

(3) Solves Systems in Nature (Diffusion equation).

q

q
q

q

q
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dx
bxfd
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(2) Weierstrass Function:
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Fractional Calculus –Other Points
(310 year old area). Non Euclidean

Forever continuous nowhere differentiable.

Weierstrass Function:

Solves Systems in Nature (Diffusion equation).

∑
∞

=

=
0

)cos()(
n

nn xbaxf π

0< a <1, b is a positive integer and ab > 1 + (3/2)π

Area 2



Fractional Calculus –Other Points

Weierstrass Function (Why?): 

∑
∞

=

=
0

)cos()(
n

nn xbaxf π

0< a <1, b is a positive integer and ab > 1 + (3/2)π

Area 2

Step 1: We understand the radius of convergence:
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Fractional Calculus –Main Points
(Solution of the Diffusion Equation)

,)(
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∞
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This now generalizes for derivatives in eax

Generalizations to functions that can be written in a power series:

Generalizations to functions that can be written in an exponential 
series:
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Fractional Calculus –Main Points
(Solution of the Diffusion Equation)

Step 2 – Laplace Transform

which holds if
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∞
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I(x;y)= Mutual 
Information

Part 1-B- Background Material
Information Theory

DR = H(x/y) + H(y/x)   (metric not a  measure)

ρ(x,y)> 0 for all x and y.  (non negativity)                              
ρ(x,y) = ρ(y,x)                  (symmetry)    
ρ(x,z) < ρ(x,y) +  ρ(y,z)    (triangular inequality)
ρ(x,y) = 0 IFF x=y  (identity of indiscernibles)                          

Mutual Information (I(x,y)) is well embraced by numerous 
disciplines. (MI is the reduction in uncertainty in an input 
object by observing an output object).

Area 3



I(x;y)= Mutual 
Information

Part 1-B- Background Material
Information Theory

Area 3

Why are we interested in flow rate?

Units of I(x;y) are bits/sec

Therefore  bits = I(x;y) ∆t  where

∆t = time to complete a task.

Suppose we view bits as discrete events.

If bits = events = fixed then:

);( yxI
eventst =∆

min I(x;y) ⇒ max ∆t, max I(x;y) ⇒ min ∆t
Optimal Performance Optimal Network Attack



Part 1-B- Background Material-Graph Theory

(1) Random Graphs. (Less vulnerable, uniformly 
connected).

(2) Scale free graphs. (Highly vulnerable, not 
uniformly connected). 

Area 4



Part 1-B- Background Material
Graph Theory (Spatial Construct)

The Internet

Area 4



Internet-Map Area 4



Part 1-B - Background Material
Graph Theory

The Internet is dynamically scale free (evidence) :

Reference:  W. E. Leland, et al., IEEE/ACM Trans. on Networking, vol 2, no. 1, 
Feb. 1994, “On the Self-Similar Nature of Ethernet Traffic (Extended Version).”

∆T = 100 sec.

∆T = 10 sec.

∆T = 1 sec.

∆T = 0.1 sec.

∆T = 0.01 sec.

Area 4(Spatial and Temporal)



Part 1-B - Background Material
Graph Theory

The Internet is dynamically scale free (evidence) :

Reference:  M. Crovella and A. Bestavous, “Self-Similarity in World Wide Web 
Traffic: Evidence and Possible Causes,” IEEE/ACM Trans. On 
Networking, Vol. 5, no. 6, December, 1997.

Area 4



Other Physiological Evidence

Reference:  
B. J. West, “Fractal Physiology, Complexity, and the Fractional Calculus,”
Chapter 6, in “Fractals, Diffusion and Relaxation in Disordered Complex 
Systems,” in Advances in Chemical Physics, vol 133, part B, John Wiley, 2006, 
Eds. W. T. Coffey and Y. P. Kalmykov.

Heartbeat

intervals

Area 4



Other Physiological Evidence

Reference:

W. Deering and B. J. West, “Fractal Physiology,” IEEE Eng. In 
Medicine and Biology, June, 1992.

Sinus Rhythm

Intervals

Area 4



Additional Background Material – H. Jeong – Complex ‘07

(The difference between random and scale-free graphs)

Highway network

Airline network

Area 4



Mathematically?   via Degree distribution P(k)

Random Scale Free

Area 4



World Wide Web
Node(point): web-page                 

link(line): hyper-link

The problem is to discern (for each application):

(1)What are the nodes?

(2)What are the links?

Area 4



INTERNET BACKBONE
Nodes: computers, routers

Links:   physical lines

(Faloutsos, Faloutsos and Faloutsos, 1999)

Area 4



SEX-Web
Nodes: people (females; males)
Links: sexual relationships

Female hub : 
k~100

Male hub : 
k~1000

(Liljeros et al. Nature 2001)

Area 4



Sexual Relationships in Jefferson High School

Male
Female

Area 4



ACTOR CONNECTIVITIES
Nodes: actors    

Links: cast jointly

Days of Thunder (1990) 
Far and Away     (1992)  
Eyes Wide Shut  (1999)

N = 212,250 actors     〈k〉 = 28.78

P(k) ~k-γ, γ=2.3

Area 4



SCIENCE CITATION INDEX

Nodes: papers 

Links: citations

1736 PRL papers (1988)

P(k) ~k-γ

(γ = 3)
(S. Redner, 1998)

Area 4



SCIENCE COAUTHORSHIP

(collaboration network)
Nodes: scientist (authors) 

Links: write paper together

(Newman, 2000, 

H. Jeong et al 2001)

Area 4



Other Examples of Scale-Free Networks

Email network

Phone-call networks

Networks in linguistics

Networks in Electronic auction (eBay)

Nodes: individual email address                     

Links: email communication

Nodes: phone-number                       

Links: completed phone call

(Abello et al, 1999)

Nodes: words                                                       

Links: appear next or one word apart from each other

(Ferrer et al, 2001)

Nodes: agents, individuals                                           

Links: bids for the same item

(H. Jeong et al, 2001)

Area 4



THEN WHY??

(i) Efficiency of resource usage.
Diameter (Scale-free) < Diameter (Exponential)

(* Diameter ~ average path length between two nodes)

(ii) Robustness of complex networks.

Scale-free networks are more robust under random 
errors, but very vulnerable under intentional attacks!

Scale-free Networks are efficient/robust.

Points:

(1)Vulnerability ([robustness]-1) is 
predicated on:

(a) Architecture of network

(b) Type of attack.

Area 4



What is the Real Problem?

Most networks are not static,  they’re dynamic!

e.g. real metabolic 

networks are DYNAMIC!!

Area 4

Let us stop with
Graph Theory and 
move on to the last 
area

Optimization Theory.
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f1f2

f3

f4

f8

f5 f6

f7

f15

f14

f13

f12

f11

f10

f9

fx

fx

Structure For the CAPS Simulation using GAs

Minimum (8 links) Maximum (20 links)

ATOF RS

PS

FS

CS

Case 2 – Full Spam
Communications

ATOF
(Air Terminal  
Operations Flight)

FS

PS
(Passenger
Services)

CS
(Cargo
Services)

RS
(Ramp
Services)(Fleet

Services)

Case 1 – Only 
Communications 
Through the ATOF

(15 flows)

Part 1-C – Let us work a practical 
example:

Area 5



Part 1-C – Issues of Vulnerability and Performance

Kirchhoff’s Law and Cut sets

Σ Currents = 0 into a node.

i1

i2

i3

i1 = i2 + i3

Kirchoff’s Law also applies in Graph Theory

Network

f1
f2

f3
f1 = f2 + f3

Area 5



Part 1-C – Issues of Vulnerability and Performance

Kirchhoff's Law and Cut sets

Cut set: flows in = flows out 
= 10 units

Cut set: flows in = flows out
= 1 unit

Maximum Flow Minimal Flow

Sensitivity = T
W

W
T

W
W
T
T

S T
W ∂

∂
=

∆

∆

= lim:
∆W→0

(T ≠0)

Let T = cut set flow, let W be the MI = I(x;y).

Network Network

ATOF:     fx + f2 + f4+ f6 + f8 = f1 + f3+ f5 + f7 + fx
PS:                               f11+ f1 = f9 + f2 + f12
RS:              f15 +  f7 + f9+ f13 =  f10+ f8
FS:                   f10 + f12+ f3 = f14+ f13+ f4+ f11    
CS:                         f5 + f14 =  f15+ f6

Area 5



j = 1, …, 11 free chromosomes

3 bit word for each chromosome.

j = 1

j = 2

j = 11

…

0
00
1 1

1

1 10
Fig. 9 Configuration for the Chromosome

(811 possibilities, NP Hard)
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How the Optimization is Conducted (Elite Pool)

fittness-3

fittness-1

fittness-2

fittness-4

fittness-20

fittness-k

….

Bump In
Bump Out
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0 50 100 150 200 250
0.5
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0.9

1

1.1
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1.3

1.4

45,883 runs, saving

235 in the fitness pool.

49,320 runs, saving

113 in the fitness pool.

Fig. 10 – Maximizing (I(x;y)) vs. Pool Entrance Number

Fig. 11 – I(x;y) Minimization vs.  Pool Entrance Number

Area 5



ATOF RS
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fx

Sensitivity Results – Logistics Problem
Area 5

Figure (12) –The sensitivity Function defined in equation (32) for ATOF vs PS

Sensitivity function in equation (32) for 5 computer runs
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Other Common Intersections
Causality Map

Optimization
Graph 
Theory

Information

Theory
Fractional

Calculus

Bioinspired

Fractals

Self

similarity

Self
similarity

flow

Nature

design

Weierstrass



Part D -What is the solution in a theoretical sense?

. Bioinspired ⇒ Perhaps we should not think Euclidean?

. Fractional Calculus may capture dynamics.

. Here may be a hypothesized solution?

Robotics

Network Science

Minimize (J1)

Subject to constraints:

Minimize/Maximize (I(x;y))

Subject to Constraints:

Figure 3 – The Original Network-Centric Distributed System
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End of Part I – Quantitative Biofractal Feedback

. Performance and vulnerability of distributed 
systems needs to be objectively quantified.

. We can learn from biological systems (fractals).   
Also the fractional calculus may offer a venue 
to characterize dynamics.

. There are many common connections  
between five different areas.  For example,  
the diffusion equation is bioinspired.

. Computational methods allow us to 
synthesize a brute force approach for insight.

. Much more work needs to be accomplished.
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Part II – Brief Review of QFT

. Quantitative Feedback Theory originated in the 1960’s by Isaac 
Horowitz using frequency domain methods for efficient robust 
control design. In 1972 a seminal paper was published.

. QFT has been used in Flight Control, Robotics, Power Systems, 
unmanned air vehicles, and many other applications.

. The controller is determined by a loop shaping process employing
a Nichols’ Chart that displays the stability, performance and 
disturbance rejection bands.

. A typical QFT Controller (synthesis) satisfies certain attributes:

(a) Robust Stability.

(b) Reference Tracking.

(c) Disturbance Rejection.

1 DoF System

2 DoF System
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QFT Basics

In the Absence of Disturbances Di and Do:

Let:  L = Loop Gain:              L = C P
Then the closed loop transfer function between Y and R is:

Input
Output
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=
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The Sensitivity of The Closed Loop Transfer Function T(s)
to plant variations P(s) can be specified via:
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QFT Basics

For QFT Design, we have at least 3 criteria to meet:

(1)Robust Stability (closed loop Robust Stability)

⇒ This is a constraint on the peak magnitude of the 

closed loop frequency response. 

(2) Reference Tracking. Let TL and TU be the upper and 

lower transfer functions, then we require:

|TL(jω)| ≤ | T(j ω) | ≤ TU(jω)|

(3) Disturbance Rejection: We require:

Where W(jω) is a weighting function (of frequency).

Note conditions (1-3) are for the class of plants P ε {Pi}

γ≤
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QFT Basics

For the Disturbances Di and Do

The Transfer Function between Di and Y is given by:

The Transfer Function between Do and Y is given by:

Then the Disturbance Rejection Can Be Specified via:

Where the Bdi and Bdo are frequency dependent functions. 
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Part III – The Diffusion Equation
Why?

(1) Many biological systems can be characterized in this manner.

(2) Outside biology, diffusion is a fundamental process (thermal 
chemical, other physical processes of all types).

(3) The diffusion equation satisfies a fractional differential 
equation.

(4) The diffusion equation is also a type of fractal.

Consider the following physical problem:
Let u(x,t) be the temperature distribution in a cylindrical  bar of 
finite length L oriented along the x-axis and perfectly insulated 
laterally. We assume heat flow in only the x axis direction. The
temperature u(x,t) satisfies:  

Where

u(0,t) = 0                                                               u(L,t) = 0

and k is the thermal conductivity, c is the specific heat and δ is 
the linear density (mass/unit length). 

The initial condition is:   u(x,0) = f(x)

The boundary conditions are:   u(0,t) = 0 = u(L,t)

t
txua

x
txu

∂
∂

=
∂

∂ ),(),( 2
2

2

k
ca δ

=2

x

X=0 X=L

u(x,0) = f(x)
x

f(x)

0
L

∀ t 



Part III – The Diffusion Equation

t
txua

x
txu
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u(0,t) = 0 = u(L,t) Boundary Conditions

u(x,0) = f(x)     Initial Condition

Possible ways to solve the equation:

(1) Fourier Method – Separation of Variables.

(2) Laplace Transforms.

(3) Fractional Calculus.

Now examine Robustness via Quantitative Feedback Theory



Part III – The Diffusion Equation
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Boundary Conditions:            u(0,t) = 0 = u(L,t)

u(x,0) = f(x)

(1) Fourier Method – Separation of Variables.
Assume   

⇒

⇒ constant =  

⇒ ⇒

and      
⇒ but  u(0,t )= 0 ⇒ C=0

⇒

and

⇒

Initial Condition
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Part III – The Diffusion Equation
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u(x,t) bounded, t > 0,  -∞ <  x <  ∞

u(x,0) = f(x)

(2) Laplace Transforms.

Initial Condition

Define the Laplace Transform Variable:

If         and         are bounded and continuous

Now Laplace transform the partial differential equation

and solve for U(x,s):

To find u(x,t), we need to find the inverse Laplace transform
u(x,t) = L-1[ U(x,s) ]

or 
u(x,t) =  L-1

By integration in the complex plane we can show:
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Part III – The Diffusion Equation
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Boundary Conditions:            u(0,t) = 0 = u(L,t)

u(x,0) = f(x)

(Heaviside Operational Calculus)

Consider:

Let                   ⇒

(treat p as a constant and solve for x)

⇒

On physical grounds, B = 0

⇒

Initial Condition
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Part III – The Diffusion Equation

t
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Boundary Conditions:            u(0,t) = 0 = u(L,t)

u(x,0) = f(x)Initial Condition

Now examine Robustness via Quantitative Feedback Theory

Step 1: Let us examine a heat control problem.

(Define units of all quantities to generalize. )

Step 2: Let us build a controller within a QFT context.

Step 3: We have now solved a heat control problem. Now

generalize to flow problems as in networks.

Again look at the units of all variables.



Part III 
Step 1: Let us examine a heat control problem.

Let udesired(x,t) = desired temperature = uD(t)   (assume x=const).

Let uactual(x,t) = actual temperature = ua(t)

Temperature error eT(t) = uD(t)-ua(t)

uD(t) + eT(t) Controller

heater

qi(t)
Plant = P

ua(t)

Thermal sensors

ua(t)-

Units Analysis: ui(t) = temperature - Co   

C = Thermal Capacitance = kilo cal / Co  

q(t) = heat input – kilo cal / second

RT = Thermal Resistance – Co sec / kilo cal

Then: 0qq
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duC i
a −= Where:
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Part III 
Step 2: Let us build a controller within a QFT context

QFT Goals:

(1) Stability 

(2) Tracking Specifications

|TL(jω)| < |F(j ω) T(j ω)|  < |Tu(j ω)| ⇒ use F for prefilter.

(3) Disturbance Rejection

max |TD(jω)| < |MD(jω)|

QFT Design Procedure:

R + LF Y
-

L = G PL
LsT
+

=
1

)( is stable.

(a) Find the plant templates Pε {Pi} – Nichols chart.

(b) Generate Performance Bounds from Nichols chart.

L0(s) = P0(s) G(s)

( c ) Loop Shaping: Add poles and zeros to L0(s).

(d) Design Prefilter F ( keep |TL|<| F T | < |TU| )

(e) Finally to determine the final controller

Done!
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Part III 
Step 3: We have now solved a heat control problem. Now

Generalize to flow problems as in networks.

Heat Control Problem:

The Network Flow Problem

Let us review the units of variables of interest:

Heat Control Problem Network Flow
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+
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q

u I     units of (C0 )

q    units of (kilo cal/sec)

C  units of (kilo cal / C0)
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dt
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Part III 
Step 3: We have now solved a heat control problem. Now

Generalize to flow problems as in networks.

Heat Control Problem Network Flow
u I     units of (C0 )

q    units of (kilo cal/sec)

C  units of (kilo cal / C0)

0qq
dt

duC i
a −=

System in ?

Controller out ?

Plant out ?

Suggestions:

Heat Control Problem – flow Network Problem – flow

q * time = kilo calories bits/ sec * seconds = bits

events/second * seconds = 
events

Equate the above variables (MI=q, events = kilo calories)

∫= ττ dq
C

u )(1

∫== dt n)informatio mutual(bitsevents

∫= MI

∫= MI

MI=

(Recall we modulated MI in the example)
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Network Flow
System in ?

Controller out ?

Plant out ?

∫= MI

∫= MI

MI=

(Recall we modulated MI in the example)
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Summary and Conclusions

Part I – Fractional Dimensions –

non Euclidean World.

Part II – Quantitative Feedback 
Theory.

Part III – Diffusion Equation.

The Future - Modeling networks as 
control systems and applying these 
techniques. QFT helps because it 
can view robust control in terms of 
simple Bode/Nichols plots.


